
第1章 LYXC-1000蓄电池内阻测试仪简介
1. 说明 本手册为的使用指南,请在操作使用测试仪前仔细阅读本手册。 
2. 主机部件 2. 1 USB接口:用来通过U盘上传测试数据和下载参数; 2. 2 测试接口:连接测试夹具; 2. 3 充电接口:连接充电器; 2. 4 LCD:320*240彩色TFT液晶屏; 2. 5 键盘:共7个按键。定义如表一。 表一 键盘功能一览表 
3. LYXC-1000蓄电池内阻测试仪主要功能特点 可对蓄电池电压、内阻、容量进行测试; 可以作为电压表使用,测试电池电压; 可对不同电压等级的蓄电池进行自动切换; 可对蓄电池进行容量测算; 测试数据同步存储; 对判别结果进行声音提示; 电池充电状态指示; 本机电池电压实时显示; 无操作自动待机; 测试数据记录存储; 通过u盘和分析软件系统进行数据交换。 4. LYXC-1000蓄电池内阻测试仪技术指标 测试量 | 量程 | 精度 | 分辨率 | 电压 | 0~16V | ±0.5% | 1mv | 内阻(2V) | 0~10mΩ | ≤5% | 1μΩ | 内阻(6V/12V) | 0~100mΩ | ≤5% | 1μΩ | 温度 | -20℃~80℃ | ±0.5%±1℃ | 1℃ | 供电电源 | 12V 3000mAh可充锂电池 | 可存数据 | 2500节 | 测试时间 | 连续工作不小于6小时 | 存储容量 | 512Kbytes | 待机时间 | >32小时(有自动待机功能) | 尺寸 | 238*134*44mm | 显示器 | 320*240彩色TFT液晶屏 | 相对湿度 | 10%~90% | 工作温度 | -10℃~45℃ | 采样率 | 1.25组(内和电压测量)/秒。 |
第2章 LYXC-1000蓄电池内阻测试仪内阻测试说明 电池内部阻抗,也称为内阻,是一项影响电池性能的关键指标。测试电池内阻以判断电池供电能力已经是业内的共识。影响电池内阻的因素有:电池尺寸、工作时间、结构、状况、温度和充电状态。 对于一个充满电的电池,当电池放电时,其内阻逐步缓慢增大;当电池放电达到一定程度后,内阻的变化量才急速增大;当电池放完电后,其电阻比全部充电状态时大2~5倍。 电池温度也影响内阻的测量,但只在冰点以下才比较明显。在32℉以下,温度对内阻的影响很大,在-20℉时的内阻是原来的两倍。这就是为何在冬季电池的能量要小很多。 电池的使用时间也会影响其内阻。电池使用时间越长,随着盐化增加内阻越大。内阻增加的多少与电池的使用和维护方法有关。电池的整体状况(例如机械装置失效)也会影响电池的内阻。某些失效模式会使电池内阻增加。 由于不同厂家在生产电池时,工艺、配方的不同,造成同样容量的电池内阻有所差异,对电池好坏的判断不应全部拘泥于电池内阻的优良值,还应参考电池内阻的变化趋势。当电池内阻超过初始内阻的1.25倍时,电池就已经不能通过测试,当电池内阻变化到初始内阻的2倍后,电池结构容量就不足80%。 本内阻仪的采用瞬间放电法对电池进行内阻测量。对蓄电池的实际工作情况进行分析研究可以发现,蓄电池的端口对外电路呈现阻抗特性。在实际的使用中,蓄电池的电极,连接线等构成的电感,由于使用频率低,引线短,电感很微弱,一般在分析和研究中不予考虑。 一般我们都将蓄电池的电阻分为金属电阻,也即是欧姆电阻;电化学电阻,包括电化学反应电阻和粒子浓差极化电阻。关于容抗部分,法拉第电容因为其恒压特性,可以将其等效为一个电压源。另外,将其他容抗都等效变化为多个电容并联形式,则电池的等效模型可以简化如图1所示。 
图1 蓄电池简化等效模型 Rm为金属电阻,这部分的电阻只是随着金属的腐蚀、蠕变、硫化等因素而缓慢地变化着。电化学电阻Re则是随着容量的状态而时刻发生着变化的,但是这部分的变化又为并联着的电容的容抗变化所掩盖着。在交流情况下,由于电容 C 比较大,大部分电流流经电容,而 Re上分流较少,此时检测到的实际上是由Rm和C串联的阻抗,而 Re被忽略了。为了避开C的分流,直接由电池产生一个瞬时的大放电电流,然后测出电池极柱上电压的瞬间变化,如图2所示,通过负载接通时的瞬间电压降和断开负载时的瞬间电压恢复可以推导出相应的内阻。 
在瞬间直流情况下,蓄电池的等效模型可以认为是一个电压源和内阻串联 (戴维南等效模型 )所构成,如图3所示。 
ΔU=RinternalI从而有Rinternal=ΔU/I 从理论上说,在这里ΔU 有两个,一个是给试验电路加上负载的瞬间,电池电压跌落值,另外一个就是断开负载的瞬间,电池电压的恢复值。但是,由于实验过程中,在合闸瞬间,电压和电流都容易引入很大的冲击,导致较大的误差,所以这里统一采用电压的恢复值,而此时电流也基本上达到了稳态。 本内阻仪可以测量电压、内阻,估算出电池剩余容量。 第3章 LYXC-1000蓄电池内阻测试仪使用方法 1. 准备 将测试线和内阻仪通过插头连接起来。 本机电池应该充满电。 2. 目视检查 使用测试仪测试前应对被测电池进行如下检查: 待测电池盒是否破裂。 待测电池单元盖是否破裂。 待测电池盒与电池单元盖的密封情况。 待测电池接头或接线柱是否被腐蚀。 待测电池压板是否过松或过紧而使电池内部破裂。 待测电池上部污垢或导电酸。 电缆或导线磨损、断裂或损坏。 待测电池接头被腐蚀或过松。 3. 注意事项 使用本内阻仪进行测试时,应观察所有设备制造商的注意事项和警告。 测试前应仔细检查所有测试引线的连接。 确认测试夹牢靠连接在电池的接线柱上。 确认正极和负极正确连接在电池的接线柱上。 如果极性接反或未连接,电压将显示为零。 电池夹必须与电池连接牢固。否则将出现错误诊断。对于接线柱在侧面的电池,将测试夹夹在圆形电缆的接线端,而不是方形电缆的接线端。为了确保连接牢固,必要时可拆下电池夹螺栓,并用一个侧面转接接头代替。安装前检查接线柱间隙是否足够。 4.电池测试 按下 键1秒钟,即可打开测试仪电源。自动进入【电池测试】界面。 
在【电池测试】界面下,按Enter键进行电池测试,按左右键进行菜单切换,序号表示当前保存的序号值;右上角的图标显示内部锂电池电量;电压显示被测电池电压值;内阻为被测电池内阻数值(单位mΩ);容量为被测电池剩余容量百分比;温度是当前环境温度;型号为所测电池安时数,通过上下键选择,当“型号"变为“基值"时,此时表示根据电池的基值(蓄电池满容量内阻值)进行测量,用户可在“系统设置"菜单中的“基值设定"设定电池的基值。 
说明: 键即为电源开关键,电源关闭时按下可打开电源,电源关闭状态下按键可打开电源,每次按下时间需持续1秒以上方为有效。 5.历史记录 在【电池测试】界面下按←、→ 键进入【历史记录】界面。 
历史记录显示从*新保存值开始排列,按↑↓键进行翻页操作 6. 系统设置 在【电池测试】或者【历史记录】界面下按←、→ 键进入【参数系统】界面,按Enter键清楚所有保存的数据! 
其中,【基值设定】设定蓄电池满容量内阻值,例如某品牌2V 300Ah蓄电池满容量内阻值为650微欧,该值由蓄电池厂家提供;【时间设置】设置系统日期和时间;【数据处理】数据保存至U盘及本机数据清理,写入U盘时保存为NZY_V20.TXT文件;【出厂设置】由厂家设置,客户一般不需要进行设置。 
7. 提示音说明 开机是蜂鸣器发出短促的“嘟"声。 在【电池测试】界面下按Enter键进行电池测试,测试开始与结束时蜂鸣器发出短促的“嘟"声。 当内部温度高于一定值时内阻仪需要进行散热冷却,蜂鸣器发出连续的“嘟-嘟"声,此时电池测试被禁用,等待冷却以后蜂鸣器发出短促的“嘟"声,此时可继续进行电池测试。 数据保存至U盘成功后,蜂鸣器发出短促的“嘟"声。

现代微型断路器能够检测短路和过载等电气故障,并能够在10毫秒内断开电路,是眨眼速度的 10 倍。如遇故障发生,它可以快速、轻松地复位,无需更换。随着向“净零未来"目标的不断发展,增加电气化和整合更多样化的可再生能源变得至关重要。而保护设备则需要管理更大的电气负载,以及应对电力供需的变化。ABB 可提供从太阳能电池板、热泵到电动汽车充电解决方案等全系列的安全技术和解决方案,并可针对剩余电流、浪涌、接地故障电流、电弧等故障提供额外的保护。 ABB电气智慧建筑全球终端配电产品组负责人Aldo Sciacca表示:“我们面向未来的产品组合着眼于实现能源效率和透明、可持续的实践。我们还专注于安装便捷安装,这在面临劳动力短缺时非常重要。通过紧凑、模块化、灵活的设计,我们能够快速、安全地对建筑物进行改造以及整合可再生能源,这在保障现代社区、现代城市、未来城市景观的安全发展和可持续发展方面发挥着至关重要的作用。" 如今的保护设备使全球各地的新旧建筑更加安全、智能和可持续化。其紧凑的设计让电气系统即使身处空间有限的历史建筑内也能得到升级改造。全球许多历史建筑,如阿姆斯特丹的“小孩堤坝风车村"(Kinderdijk Windmills)和德国的“亚琛大教堂"(Aachen Cathedral),其内部结构都特别容易受到电气设备和系统安全的威胁,并可能引发火灾。目前,这些被联合国教科文组织规划为世界遗产建筑的电气系统均已通过安装紧凑型保护装置进行更新,例如电弧故障检测装置 (AFDD),该装置具有集成剩余电流和过流保护 (RCBO) 的保护功能。这些设备可以在未来长达几个世纪保护这些历史文化地标的安全。
上海来扬电气转载其他网站内容,出于传递更多信息而非盈利之目的,同时并不代表赞成其观点或证实其描述,内容仅供参考。版权归原作者所有,若有侵权,请联系我们删除。 |